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Abstract

Parsing continuous acoustic streams into perceptual units is fundamental to auditory perception. Previous studies have uncovered
a cortical entrainment mechanism in the delta and theta bands (~1–8 Hz) that correlates with formation of perceptual units in
speech, music, and other quasi-rhythmic stimuli. Whether cortical oscillations in the delta-theta bands are passively entrained by
regular acoustic patterns or play an active role in parsing the acoustic stream is debated. Here, we investigate cortical oscillations
using novel stimuli with 1/f modulation spectra. These 1/f signals have no rhythmic structure but contain information over many
timescales because of their broadband modulation characteristics. We chose 1/f modulation spectra with varying exponents of f,
which simulate the dynamics of environmental noise, speech, vocalizations, and music. While undergoing magnetoencephalogra-
phy (MEG) recording, participants listened to 1/f stimuli and detected embedded target tones. Tone detection performance varied
across stimuli of different exponents and can be explained by local signal-to-noise ratio computed using a temporal window
around 200 ms. Furthermore, theta band oscillations, surprisingly, were observed for all stimuli, but robust phase coherence was
preferentially displayed by stimuli with exponents 1 and 1.5. We constructed an auditory processing model to quantify acoustic
information on various timescales and correlated the model outputs with the neural results. We show that cortical oscillations
reflect a chunking of segments, > 200 ms. These results suggest an active auditory segmentation mechanism, complementary to
entrainment, operating on a timescale of ~200 ms to organize acoustic information.

Introduction

Cortical oscillations are entrained not only by strictly periodic stim-
uli but also by quasi-rhythmic structures in sounds, such as the
amplitude envelope of speech (Luo & Poeppel, 2007; Kerlin et al.,
2010; Cogan & Poeppel, 2011; Peelle et al., 2013; Zion Golumbic
et al., 2013; Doelling et al., 2014; Kayser et al., 2015) and music
(Doelling & Poeppel, 2015), the frequency modulation envelope
(Henry & Obleser, 2012; Herrmann et al., 2013; Henry et al.,

2014), and even abstract linguistic structure (Ding et al., 2015).
These studies have advanced our understanding of how the auditory
system exploits regular temporal structure to organize acoustic infor-
mation. It is not clearly understood, though, whether cortical oscilla-
tions tracking sounds are a result of neural responses passively
driven by rhythmic structures or reflect a built-in constructive pro-
cessing scheme, namely that the auditory system employs a win-
dowing process to actively group acoustic information (Ghitza &
Greenberg, 2009; Ding & Simon, 2014).
It has been proposed that cortical oscillations in the auditory sys-

tem reflect an active parsing mechanism—the auditory system
chunks sounds into segments of around 150–300 ms, roughly a
cycle of the theta band, for grouping acoustic information (Ghitza &
Greenberg, 2009; Schroeder et al., 2010; Ghitza, 2012). A slightly
different (but related) view hypothesizes that the auditory system
processes sounds using temporal integration windows of multiple
sizes concurrently: Within a short temporal window (~30 ms), tem-
porally fine-grained information is processed; a more ‘global’ acous-
tic structure is extracted within a larger temporal window (~200 ms)
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(Poeppel, 2003; Giraud & Poeppel, 2012). These frameworks are
largely based on studying speech signals that contain these time-
scales as relatively obvious components: The temporal modulations
of speech peak around 4–5 Hz (Ding et al., 2017). However, if such
a segmentation scale or integration window exists at the timescale
of ~200 ms in the auditory system intrinsically, then we should find
evidence of its deployment even when the sounds have broadband
spectra and are irregularly modulated over a wide range of time-
scales. In contrast, if cortical oscillations are solely or primarily
stimulus-driven, one ought not to find robust oscillatory activity
using such irregular sounds.
Natural sounds, such as environmental noise, speech, and some

vocalizations, often have broadband modulation spectra that show a
1/f pattern: The modulation spectrum has larger power in the low
frequency range and the modulation strength decreases as frequency
increases (Voss & Clarke, 1978; Singh & Theunissen, 2003; The-
unissen & Elie, 2014). This characteristic of modulation spectra can
be delineated using a straight line at a logarithmic scale, with its
exponent indicating how sounds are modulated across various time-
scales. For example, environmental noise has a relatively shallow 1/
f modulation spectrum with an exponent of 0.5, while speech has a
steeper spectrum with an exponent of f between 1 and 1.5 (Singh &
Theunissen, 2003). As 1/f spectra reflect acoustic dynamics across
many timescales, and not rhythmic structure centered at a narrow
frequency range, 1/f stimuli are well suited to test how the auditory
system spontaneously organizes acoustic information across various
timescales.
We generated frequency modulated sounds having 1/f modula-

tion spectra with different exponents, to imitate irregular dynamics
in natural sounds (Garcia-Lazaro et al., 2006) and inserted a tone
of short duration (50 ms) as a detection target. We recorded partic-
ipants’ neurophysiological responses while they listened to the 1/f
stimuli and detected the embedded tones. We were interested to
see what timescale of acoustic information is used to detect salient
changes (i.e. embedded tones) and at what frequencies robust oscil-
latory activity is evoked by irregular 1/f stimuli. We then used an
auditory processing model to quantify acoustic information over
different timescales. By employing mutual information analysis, we
determine the timescale over which acoustic information is
grouped. By designing our experiment in this manner, we are able
to investigate the temporal structure imposed by the neural archi-
tecture of the auditory system to sample information from the
environment.

Materials and methods

Participants

Fifteen participants (age 23–49, one left-handed, eight females) took
part in the experiment. Handedness was determined using the Edin-
burgh Handedness Inventory (Oldfield, 1971). All participants had
normal hearing and no neurological deficits. Written informed con-
sent was obtained from every participant before the experiment. The
experimental protocol was approved by the New York University
Institutional Review Board.

Stimuli and design

We followed the methods used in Garcia-Lazaro et al. (2006) to
generate similar (but modified) stimuli with modulation spectra of 1/
f. A schematic plot of the stimulus generation process is shown in
Fig. 1A.

We first generated spectral modulation envelopes with ‘random-
walk’ profiles using an inverse Fourier method. We fit the modula-
tion spectra to have a 1/f shape, with exponents at 0.5, 1, 1.5, and 2
(Fig. 1A left panel) and converted the spectra from the frequency
domain back to the temporal domain using inverse Fourier transfor-
mation. The phase spectra were obtained from pseudo-random num-
bers drawn uniformly from the interval [0, 2p]. Because we fixed
stimulus length to 3 s and the sampling rate to 44 100 Hz, we cre-
ated modulation spectra of 44 1009 3 points with a frequency range
of 0–22 050 Hz. Using different random number seeds for the phase
spectra, we were able to generate spectral modulation envelopes
(Fig. 1A middle panel) with different dynamics for each exponent.
The modulation envelopes were normalized to have unit standard
deviation.
Second, we created tone complexes comprising tonal components

spaced at third-octave intervals and then used the spectral modula-
tion envelopes generated as above to modulate the tone complexes.
We set the fundamental frequency to 200 Hz and limited the fre-
quency range of the stimuli to between 200 and 4000 Hz, well
within humans’ sensitive hearing range. The frequencies of each
tonal component were modulated through the frequency range from
200 Hz to 4 kHz by the envelopes generated in the first step. Modu-
lated tonal components outside this frequency range at one end
would reenter it at the opposite end so that the number and spacing
of the tonal components within this frequency range was always
constant.
We used the same random seed to generate one stimulus for each

of four exponents, 0.5, 1, 1.5, and 2 so that all four stimuli have the
same phase spectrum but different modulation spectra. During the
experiment, we presented these four stimuli 25 times, and we term
these four the ‘frozen’ stimuli. Next, we used distinct random seeds
to generate 25 ‘distinct’ stimuli with different phase spectra for each
exponent. Each of these was presented once, creating four groups of
‘distinct’ stimuli. In total, there were eight stimulus groups, compris-
ing four groups of ‘frozen’ stimuli and four groups of ‘distinct’
stimuli. In total, 200 stimuli (25 stimuli 9 4 exponents 9 2 stimu-
lus types) were used in the study.
A 1000-Hz pure tone of 50-ms duration was inserted into the

‘distinct’ stimuli, and the onset of the tone was randomly distributed
between 2.2 and 2.7 s. The signal-to-noise ratio of the tone to these
distinct stimuli was fixed at �15 dB, because in preliminary testing
we determined that a tone at SNR �15 dB can be detected at an
adequate rate (i.e. avoiding ceiling or floor effects). We applied a
cosine ramp-up function in a window of 30 ms at the onset of all
stimuli and normalized the stimuli to ~70 dB SPL (sound pressure
level).

Stimulus analysis

To characterize the spectral and temporal modulations in our stimuli,
we computed modulation power spectra (MPS) for the four ‘frozen’
stimuli used in the experiment (Fig. 1B) (Singh & Theunissen,
2003; Elliott & Theunissen, 2009). We first created time–frequency
representations of the stimuli using the log amplitude of their spec-
trograms obtained with Gaussian windows. We then applied the 2D
Fourier Transform to the spectrograms and created MPS by taking
the amplitude squared as a function of the Fourier pairs of the time
and frequency axes. As temporal modulations in our stimuli repre-
sent acoustic dynamics across timescales, we averaged the MPS
across the spectral modulation dimension to show averaged temporal
modulation spectra for each stimulus (Fig. 1C). Figure 1B shows
that the prominent spectral modulation centers around 1.7 cycles per
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1000 Hz; specifically, at this modulation frequency, there is
increased modulation power from exponent 0.5–2. Figure 1C shows
that the averaged temporal modulations vary with the modulation
spectra we used to generate each stimulus. The stimulus with expo-
nent 0.5 shows a flat averaged temporal modulation spectrum and

has low modulation power, whereas the stimulus with exponent 2.0
has the steepest averaged temporal modulation spectrum. Note,
importantly, that the averaged temporal modulation spectra of all
four stimuli show no peak of power density between 4 and 7 Hz
(Fig. 1C).
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Fig. 1. Stimulus generation and modulation power spectrum. (A) Schematic plot of stimulus generation. Left panel: schematic plot of modulation spectra used
to generate modulation envelopes. The color code represents the spectra of different exponents. Black: 0.5; green: 1.0; blue: 1.5; red 2.0. Middle panel: modula-
tion envelopes generated using the four different exponents. (Color code as in the modulation spectra.) Right panel: spectrograms of the four ‘frozen’ stimuli
(see Methods) used in the experiment. Sound files of the stimuli can be accessed here: http://edmond.mpdl.mpg.de/imeji/collection/kZalRMtxa19mlRyG. (B)
Modulation power spectra of the four frozen stimuli. The dashed boxes show increased power density at a spectral modulation of around 1.7 cycles per
1000 Hz in the stimuli. (C) The averaged temporal modulation spectrum. The averaged temporal modulation was computed by averaging along the spectral
modulation dimension of the modulation power spectrum (in (B). From left to right, the averaged temporal modulation spectrum of each stimulus becomes stee-
per as the exponent increases. Note that there are no prominent peaks in the averaged temporal modulation spectra that indicate regular modulations centered at
a narrow frequency band.
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MEG recording, preprocessing, and protocol

Magnetoencephalography signals were measured with participants in
a supine position and in a magnetically shielded room using a 157-
channel whole-head axial gradiometer system (KIT, Kanazawa Insti-
tute of Technology, Japan). A sampling rate of 1000 Hz was used,
with an online 1–200 Hz analog band-pass filter and a notch filter
centered around 60 Hz. After the main experiment, participants were
presented with 1-kHz tone beeps of 50-ms duration as a localizer to
determine their M100 evoked responses (Roberts et al., 2000). 20
channels with the largest M100 responses in both hemispheres (10
channels in each hemisphere) were selected as auditory channels for
further analysis for each participant individually.
Magnetoencephalography data analysis was conducted in

MATLAB 2015b (The MathWorks, Natick, MA, USA) using the
Fieldtrip toolbox 20160106 (Oostenveld et al., 2011) and the wave-
let toolbox in MATLAB. Raw MEG data were noise-reduced offline
using the time-shifted principle component analysis (de Cheveign�e
& Simon, 2007). Trials were visually inspected, and those with arti-
facts such as channel jumps and large fluctuations were discarded.
An independent component analysis was then used to correct for
artifacts caused by eye blinks, eye movements, heartbeat, and sys-
tem noise. After preprocessing, 0 to (at most) 5 trials were removed
for each exponent of each stimulus type, leaving a minimum of 20
trials per condition. To avoid biased estimation of inter-trial phase
coherence, we included exactly 20 trials in the analysis for all expo-
nents of all stimulus types. Each trial was divided into a 5-s epoch,
with a 1-s pre-stimulus period and a 4-s post-stimulus period. Each
trial was baseline corrected by subtracting the mean of the whole
trial prior to further analysis.
During MEG scanning, all stimuli, both ‘frozen’ and ‘distinct’,

were presented in a pseudo-randomized order for each participant.
After each stimulus was presented, participants were required to
push one of two buttons to indicate whether they heard a tone in the
stimulus. Between 1 and 2 s after participants responded, the next
stimulus was presented. The participants were required to keep their
eyes open and to fix on a white cross in the center of a black
screen. The stimuli were delivered through plastic air tubes con-
nected to foam ear pieces (E-A-R Tone Gold 3A Insert earphones,
Aearo Technologies Auditory Systems).

Behavioral data analysis

Behavioral data were analyzed in MATLAB using the Palamedes tool-
box 1.5.0 (Prins & Kingdom, 2009). For each exponent, there were 50
stimuli, half of which had a tone embedded. A two-by-two confusion
matrix was created for each exponent by treating the trials with the tone
embedded as ‘target’ and the other trials as ‘noise’. Correct detection of
the tone in the ‘target’ trials was counted as ‘hit’, while reports of hear-
ing a tone in the ‘noise’ trials were counted as ‘false alarm’; d-prime
values were computed based on hit rates and false alarm rates of each
table. A half artificial incorrect trial was added to the table with all cor-
rect trials (Macmillan & Creelman, 2004).

Evoked responses to tones

We calculated the root mean square (RMS) of evoked responses to
the onset of tones for each ‘distinct’ group across 20 auditory chan-
nels and across 20 trials. Baseline was corrected using the MEG sig-
nal from 200-ms pre-onset of the tone in each selected channel.
After baseline correction, we averaged RMS across 20 auditory
channels.

Evoked responses to stimulus onset

We calculated RMS of evoked responses to the onset of stimulus
for each ‘frozen’ group and each ‘distinct’ group across 20 auditory
channels and across 20 trials. Baseline was corrected using the
MEG signal from 200-ms pre-onset of the stimuli in each selected
channel. After baseline correction, we averaged RMS across 20
auditory channels.

Local SNR of the embedded tones

The exponents of stimuli result in different modulation profiles and
can modulate local SNR of the embedded tones across stimuli.
Because the differences of local SNR could potentially explain the
behavioral performance of tone detection, we computed the local
SNR of the embedded tones using rectangular temporal windows
combined with equivalent rectangular bandwidth (ERB) at 1000 Hz
(Glasberg & Moore, 1990). We chose five temporal window sizes,
50, 100, 200, 300, and 500 ms, and five bandwidths, 0.25, 0.5, 1,
1.5, and 2 ERB (33, 66, 133, 199, and 265 Hz). Across different
bandwidths, we centered the temporal window in the middle of the
tone—25 ms after tone onset—and computed power of the ‘distinct’
stimuli without the tone in this temporal window. Then, to compute
local SNR, we divided the power of the tone by the power of the
‘distinct’ stimuli within the temporal window and the narrow band.
We transformed the values of local SNR into decibels by taking a
log with base 10 and multiplying by 10.

Phase coherence and power analysis

To extract time–frequency information, single-trial data from each
MEG channel were transformed using functions of Morlet wavelets
embedded in the Fieldtrip toolbox, with frequencies ranging from 1
to 50 Hz in steps of 1 Hz. As all the stimuli used are 3 s long, to
be able to extract low-frequency oscillations (e.g. 1 Hz) and to bal-
ance spectral and temporal resolution of time–frequency transforma-
tion, window length increased linearly from 1.5 cycles to seven
cycles from 1 to 20 Hz and then was kept constant at seven cycles
above 20 Hz. Phase and power responses were extracted from the
wavelet transform output at each time–frequency point.
The ‘inter-trial phase coherence’ (ITPC) was calculated for all

eight groups of stimuli at each time–frequency point [details can be
seen in Lachaux et al. (1999)]. ITPC is a measure of consistency of
phase-locked neural activity entrained by a stimulus across trials.
ITPC of a specific frequency band is thought to reflect cortical
entrainment to temporal modulations in sounds (Luo et al., 2013;
Ding & Simon, 2014; Doelling et al., 2014; Kayser et al., 2015)
and therefore can be used as an index to indicate temporal coding
of each stimulus type at certain frequency band here. Although
event-evoked responses and ITPC both measure evoked neural
responses and are highly correlated (Mazaheri & Picton, 2005),
evoked responses show energy that spreads across a broad frequency
range (VanRullen et al., 2014) and are limited by event rates (Laka-
tos et al., 2013). Furthermore, phase reset of ongoing oscillations of
certain frequency band is not always correlated with sensory events
(Mazaheri & Jensen, 2006, 2010). Therefore, we chose to use ITPC
in our current study.
The induced power response was calculated for all eight groups

of stimuli and was normalized by dividing the mean power value in
the baseline range (�0.6 to �0.1 s) and converted to decibel units.
The ITPC and power response for four groups of ‘frozen’ stimuli

were averaged from 0.25 to 2.8 s post-stimulus to avoid effects of
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neural responses evoked by the stimulus onset and offset. We
applied the same calculation of ITPC and power response to four
groups of ‘distinct’ stimuli, but used the results as a baseline for the
ITPC and power response of the ‘frozen’ stimuli. The differentiated
ITPC (dITPC) and differentiated induced power were obtained by
subtracting the ITPC and power response for ‘distinct’ stimuli out
from ‘frozen’ stimuli for each participant. These two indices reflect
phase-locked responses to the repeated temporal structure in the
‘frozen’ stimuli.

Auditory processing model

The 1/f stimuli have a broadband modulation spectrum and contain
information across all timescales. To quantify acoustic information
on each timescale and later to examine on what timescale the audi-
tory system groups acoustic information, we constructed an auditory
processing model inspired by the concept of cochlear-scaled entropy
(Stilp & Kluender, 2010; Stilp et al., 2010) using temporal filters of
different sizes. By convolving temporal filters with the envelopes of
the stimuli in each cochlear band, we can extract acoustic changes,
which represent critical acoustic information on different timescales
—and can be seen as an analogue to features in visual stimuli result-
ing from convolution with Gabor filters (Olshausen & Field, 2004).
An illustration of this auditory processing model can be seen in
Fig. 4.
First, the stimuli were filtered using a gammatone filterbank of 64

bands. The envelope of each cochlear band was extracted using Hil-
bert transformation on each band and taking the absolute values
(Glasberg & Moore, 1990; Søndergaard & Majdak, 2013). We then
convolved the envelope of each band with the temporal filters that
we constructed (described below). The values calculated from the
convolution were centered on the middle point of the temporal fil-
ters and were normalized according to the length of the temporal fil-
ter used. We padded 500 ms time points at the beginning and the
end of the stimuli. After convolution, we took out padded points
and only saved the time points of the original stimuli. We then took
a vector norm at each time point across 64 cochlear bands.
The temporal filter was constructed by multiplying a Gaussian

temporal window with one period of a sinusoid wave. We chose
Gaussian temporal windows of ten sizes: 20, 40, 60, 80, 100, 140,
200, 300, 400, and 500 ms, with the mean centered in the middle of
the temporal window and the standard deviation being one-fifth of
window length. We then created sinusoid waves from 0 to 2*pi with
periods corresponding to each Gaussian temporal window. Then, we
multiplied one period of the sinusoid waves with 10 Gaussian tem-
poral windows of corresponding sizes to create 10 temporal filters.
These temporal filters function as a one-dimensional filter that

extracts changes in each cochlear band, which can be compared to
narrowband spectral–temporal receptive fields often found in inferior
colliculus (Escab�ı et al., 2003; Andoni et al., 2007; Carlson et al.,
2012). Within a temporal window in which the envelope fluctuates
abruptly, the output of the convolution would give a large value.
The calculation of the vector norm summarizes temporal changes
across all cochlear bands and generates a value at each time point
that represents broadband spectro-temporal changes within this tem-
poral window. This is intended to roughly correspond to auditory
processes of cortical areas employing spectral–temporal receptive
fields with broadband tuning properties (Theunissen et al., 2000;
Machens et al., 2004; Theunissen & Elie, 2014). For example, if the
frequency modulation changes abruptly and harmonics sweep across
frequency bands within a temporal window, the convolution would
generate large values that differ across frequency bands. Taking a

vector norm would generate a high value. Therefore, we can quan-
tify acoustic changes along both temporal and spectral domains
using output from this model.
The model outputs calculated at each time point indicate the pres-

ence of acoustic changes on the timescale corresponding to the tem-
poral filter size. We refer to the model outputs as Acoustic Change
Index (ACI). Finally, we downsampled the ACI from 44 100 to
100 Hz to match the sampling rate of the phase series in the MEG
signals (100 Hz).

Differentiated mutual information between ACI and phase
series

To determine at what timescale acoustic information is extracted by
the auditory system, we computed mutual information between
phase series of MEG signals and ACI. Mutual information is an
index to quantify how much information is shared between two time
series and suggests correlation between two series (Cogan & Poep-
pel, 2011; Gross et al., 2013; Ng et al., 2013; Kayser et al., 2015).
We chose to compute mutual information instead of a linear correla-
tion because ACI is an index of real numbers while the phase series
is both circular and derived from imaginary numbers. A linear corre-
lation cannot correctly measure the relationship between these two
metrics. While ITPC cannot tell us which features in the stimulus
drive robust phase coherence, if the phase series in the theta band is
found to have high mutual information with ACI of this stimulus at
a timescale of 200 ms, we can reasonably conclude that the auditory
system extracts acoustic information in this stimulus on a timescale
of 200 ms.
We computed the mutual information between the phase series of

each frequency (1–50 Hz) collected under the frozen stimuli and
ACI of different timescales for each corresponding ‘frozen’ stimulus
type. Then, we computed the mutual information between phase ser-
ies collected under the ‘distinct’ stimuli and ACI of different time-
scales for each corresponding ‘frozen’ stimulus type. Next, we
calculated the differences between the mutual information using tri-
als collected under ‘frozen’ stimuli and the mutual information using
trials under ‘distinct’ stimuli. By doing this, we subtracted out
mutual information contributed by spontaneous phase responses
evoked by sounds in general and also normalized the mutual infor-
mation across frequencies to remove the effects caused by 1/f char-
acteristics of neural signals (He et al., 2010; He, 2014). This
differentiated mutual information, resulted from using trials collected
under ‘distinct’ stimuli as a baseline, highlighted the mutual infor-
mation between the structure of ACI and the phase series of MEG
signals. For example, we computed the mutual information between
ACI for a frozen stimulus of exponent 1 and 20 phase series col-
lected under this frozen stimulus from MEG signals, and then com-
puted the mutual information between ACI for this frozen stimulus
and 20 phase series collected from MEG signals when subjects were
listening to 20 ‘distinct’ stimuli of exponent 1. We took a difference
between these two values of mutual information and used this differ-
ence as the differentiated mutual information.
Mutual information was calculated with the Information Break-

down Toolbox in MATLAB (Pola et al., 2003; Magri et al., 2009).
For each frequency of the MEG response, the phase distribution was
composed of six equally spaced bins: 0 to pi/3, pi/3 to pi * 2/3, pi *
2/3 to pi, pi to pi * 4/3, pi * 4/3 to pi * 5/3, and pi * 5/3 to pi * 2.
The ACI was grouped using eight bins equally spaced from the min-
imum value to the maximum value. Eight bins were chosen to have
enough discrete precision to capture changes in acoustic properties
while making sure that each bin has sufficient counts for mutual

© 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
European Journal of Neuroscience, 1–13

Active chunking reflected by theta band oscillations 5



information analysis, as the greater number of bins would lead to
zero counts in certain bins.
The estimation of mutual information is subject to bias caused by

finite sampling of the probability distributions because limited data
were supplied in this study. Therefore, a quadratic extrapolation
embedded in the Information Breakdown Toolbox was applied to
correct bias. Mutual information is computed on the data set of each
condition. A quadratic function is then fit to the data points, and the
actual mutual information is taken to be the zero-crossing value.
This new value reflects the estimated mutual information for an infi-
nite number of trials and greatly reduces the finite sampling bias
(Montemurro et al., 2007; Panzeri et al., 2007). The mutual infor-
mation value of each frequency was calculated for each subject and
for each channel across trials before averaging.

Results

Tone detection performance increases with exponent though
SNR is constant

Behavioral results

Subjects detected tones inserted into the ‘distinct’ stimuli. The
behavioral results (Fig. 2A) demonstrate that participants’ sensitivity
to tones (d-prime) increased to sounds with increasing exponent,
although, importantly, the SNR is the same across all stimuli. The
behavioral performance in detecting tones was examined using a
repeated-measures one-way ANOVA (RMANOVA) with the main factor
of Exponent. There is a significant main effect of Exponent
(F3,42 = 34.07, P < 0.001, g2

p = 0.709), and a linear trend test
showed a significant upward trend (F1,14 = 59.19, P < 0.001,
g2
p = 0.809).

RMS of tone evoked responses

As the listeners’ performance on detecting tones varied across stim-
uli with different exponents of the 1/f stimuli, we examined whether
the evoked responses elicited by the tones also show an effect of
Exponent (Fig. 2B, upper panel). We calculated the RMS of the
MEG signal elicited by tones, averaged over 20 auditory channels,
and conducted, on each time point from the onset point of tones to
250 ms after tone onset, a one-way RMANOVA with Exponent as the
main factor. After adjusted FDR correction, we found a significant
main effect of Exponent from 120 to 175 ms (P < 0.01) after tone
onset. To investigate this further, we averaged across this window
and found a significant linear trend (F1,14 = 25.16, P < 0.001,
g2
p = 0.642). The result is shown in Fig. 2B (lower panel). The

RMS results correspond to behavioral results and demonstrate that
exponents do modulate detection of tones. The behavioral results are
not likely caused by response bias.

Local SNRs

The behavioral results and RMS results demonstrate that tone detec-
tion varies with exponent. Although the global SNR was matched
across the stimuli with different exponents, local SNR varies with
exponent and could cause differences in tone detection performance
across different stimuli. Therefore, we computed local SNR using
rectangular temporal windows of different sizes combined with
ERBs of different bandwidths across all 25 trials for each of four
exponents. The trial number marched the trails used in behavioral
analysis. Pearson’s correlation between behavioral results and the

local SNRs across four exponents was then calculated to assess
whether the local SNR can explain tone detection performance.
We found high correlation coefficients (> 0.8) between behavioral

results and local SNR computed using all combinations of temporal
window sizes and ERB bandwidths (Fig. 2D). To rule out spurious
correlations, we established a significant threshold using a shuffling
procedure. We first shuffled the labels of the four types of ‘distinct’
stimuli and generated a new set of stimuli, and then computed local
SNR of each type of stimuli. We then correlated the local SNR with
behavioral results to get a correlation coefficient for each combina-
tion of temporal window size and ERB bandwidth. We repeated this
shuffling procedure 1000 times and used a right-sided alpha level of
99% as the significance threshold level. Significant correlations
between behavioral results and local SNR were found for the tempo-
ral window sizes between 140 and 250 ms, combined with ERB
bandwidths from 1 to 2. We plotted local SNR against tone detec-
tion performance on each exponent separately for the significant
peak correlation computed using each ERB bandwidth (Fig. 2E).
These results show that tone detection performance can be explained
by the local SNR modulated by exponents. The acoustic structure of
the stimuli becomes sparser with larger exponents, and therefore,
local SNR increases, which facilitates tone detection in the stimuli.
Most importantly, the local SNR computed using the temporal win-
dow of around 200 ms can best capture the behavioral variance.
This suggests that a temporal window of ~200 ms is used by the
auditory system to group acoustic information and extract salient
changes in acoustic streams.

Exponent modulates onset responses and differentiated
inter-trial phase coherence in the delta and theta bands

RMS of onset responses

As the acoustic structures of the 1/f stimuli vary with exponents,
we examined whether the onset responses to the stimuli also show
an effect of Exponent (Fig. 3A). We calculated the RMS of the
MEG signal elicited by eight stimulus groups (four ‘frozen’ groups
and four ‘distinct’ groups), averaged over 20 auditory channels, and
conducted a one-way RMANOVA with Exponent as the main factor,
separately for the ‘frozen’ stimuli and the ‘distinct’ stimuli. The
one-way RMANOVA was conducted on each time point from the onset
point to 250 ms after stimulus onset. After adjusted FDR correction,
we found a significant main effect of Exponent for the ‘frozen’
stimuli from 90 ms to 115 ms and for the ‘distinct’ stimuli from
95 ms to 105 ms and from 115 ms to 130 ms (P < 0.01). The
RMS results demonstrate that onset responses increase with expo-
nents. As onset responses are sensitive to acoustic structures of
sounds and are modulated by spectral complexity (Shahin et al.,
2007), the results here are likely caused by the spectral sparsity—as
the exponent increases, spectral modulation of the stimuli becomes
more centered (Fig. 1) and, therefore, spectral sparsity increases
with exponents.

Differentiated inter-trial phase coherence

The dITPC, the difference of phase coherence between the ‘frozen’
stimuli and the ‘distinct’ stimuli on the independently defined audi-
tory channels, was calculated from 1 to 50 Hz. The results are
shown in Fig. 3B. We observed robust phase coherence in the theta
band (5–7 Hz) for stimuli of all four exponents and some degree of
selectivity for the stimuli with exponents 1 and 1.5. In the delta
band (1 Hz), there was a preference in phase coherence for the
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stimuli with exponent 2. The topographies of dITPC for four expo-
nents in the delta and theta bands are shown in Fig. 3C.
To measure the effects of exponent on dITPC across frequencies,

we conducted a one-way RMANOVA with Exponent as the main factor
from 1 to 50 Hz. After adjusted FDR correction, this revealed a
main effect of Exponent from 5 to 7 Hz (P < 0.05), which is in the
theta band range, and a main effect at 1 Hz (P < 0.05), which is in
the delta band. We then averaged dITPC within two frequency
ranges separately and conducted a two-way RMANOVA with factors of
Exponent and Frequency band (delta: 1 Hz; and theta: 5–7 Hz) on
dITPC. We found a main effect of Exponent (F3,42 = 5.24,

P = 0.004, g2
p = 0.273) and an interaction between Exponent and

Frequency band (Greenhouse–Geisser corrected: F3,42 = 11.64,
P < 0.001, g2

p = 0.454). A one-way RMANOVA with a factor of Expo-
nent conducted separately for each frequency band shows a main
effect both in the delta band (Greenhouse–Geisser corrected:
F3,42 = 7.69, P < 0.001, g2

p = 0.355) and in the theta band
(F3,42 = 8.28, P < 0.001, g2

p = 0.372). A post hoc paired t-test con-
ducted in the theta band (5–7 Hz) showed that dITPC of stimuli
with exponents 1 and 1.5 are significantly larger than the stimuli
with exponent 0.5 [exponent 1: t (14) = 4.27, P = 0.006, d = 2.28;
exponent 1.5: t (14) = 4.08, P = 0.006, d = 2.18] after Bonferroni
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correction. Comparisons of dITPC for stimuli of exponents 1 and
1.5 with stimuli of exponent 2 were significant but did not survive
correction for multiple comparisons [exponent 1: t (14) = 2.31,
P = 0.036, d = 1.23; exponent 1.5: t (14) = 2.34, P = 0.035,
d = 1.25]. In the delta band (1 Hz), the paired t-test shown that
dITPC of stimuli with exponent 2 is significantly larger than the
stimuli with exponent 0.5 [t (14) = 7.12, P < 0.001, d = 3.81] and
exponent 1.0 [t (14) = 4.16, P = 0.006, d = 2.22].
Because dITPC reflects the difference of phase coherence between

the ‘frozen’ stimuli and the ‘distinct’ stimuli, a one-sample t-test
against zero on dITPC of each stimulus type in each band tests
whether there is robust phase coherence across trials evoked by the
‘frozen’ stimuli. In the delta band (Fig. 3B, right upper panel), we

found dITPC was significantly above zero when the exponent is 2 [t
(14) = 6.80, P < 0.001, d = 3.63]. In the theta band (Fig. 3B, right
lower panel), we found significant dITPC above zeros across all
exponents [Exponent 0.5: t (14) = 3.59, P = 0.024, d = 1.92; Expo-
nent 1.0: t (14) = 5.45, P < 0.001, d = 2.91; Exponent 1.5: t
(14) = 6.63, P < 0.001, d = 3.54; Exponent 2.0: t (14) = 4.64,
P < 0.001, d = 2.48]. Bonferroni correction was applied in each
band.
In summary, the results show that all four types of ‘frozen’ stim-

uli evoked robust phase coherence in the theta band. This supports
the hypothesis that phase coherence observed in the theta band (and
in many studies) is not solely a result of stimulus-driven entrain-
ment, as no regular temporal modulation exists in the stimuli.
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The stimuli with exponent 1 and 1.5 revealed higher phase coher-
ence values than the stimuli with exponent 0.5. This phase coher-
ence pattern in the theta band showed a similar pattern to findings
in ferrets using single-unit recording (Garcia-Lazaro et al., 2006).
Our results further show that this coding preference comes from the
theta band, which indicates an underlying auditory process on a
timescale of ~150–250 ms. The auditory processing on a timescale
of 150–250 ms, reflected by robust phase coherence in the theta
band, may be critical and is possibly the reason for the preference
found in Garcia-Lazaro et al. (2006).
Surprisingly, we observed in the delta band that the stimuli of

exponent 2 evoked robust phase coherence. The differences in
dITPC patterns between the theta and delta bands indicate that the
auditory system independently tunes to information on the time-
scales corresponding to the theta and delta bands (Cogan & Poeppel,
2011).

Differentiated Induced Power shows no effect

We examined effects of exponents on induced power from 1 to
50 Hz by conducting a one-way RMANOVA with Exponent as the
main factor. We found no significant effect on Exponent from 1 to
50 Hz after adjusted FDR correction (P > 0.05). This suggests that
the power response does not differentially code temporal informa-
tion critically, which is also consistent with previous studies (Cogan
& Poeppel, 2011; Luo & Poeppel, 2012; Ng et al., 2013; Doelling
et al., 2014; Kayser et al., 2015).

Raw power shows no effect and does not bias ITPC
estimation

We examined effects of the exponents on raw power (without baseline
correction) from 1 to 50 Hz by conducting a one-way RMANOVA with
Exponent as the main factor. We did such tests on the ‘frozen’ stimuli
and the ‘distinct’ stimuli, separately. We found no significant effect of
Exponent for the ‘frozen’ stimuli from 1 to 50 Hz after adjusted FDR
correction (P > 0.05). Similarly, we found no significant effect of
Exponent for the ‘distinct’ stimuli from 1 to 50 Hz after adjusted FDR
correction (P > 0.05). This suggests that the power is homogenous
across different exponents, and therefore, estimation of ITPC for stim-
uli of different exponents should not be biased by the power.

Differentiated mutual information between phase and ACI on
distinct scales

Next, we used a mutual information approach to quantify at what
timescale the acoustic information in the stimuli robustly entrained
cortical oscillations in the delta (1 Hz) and theta (5–7 Hz) bands. In
Fig. 4A–F, we illustrate how ACI was generated by the auditory
processing model. The waveforms of stimuli were filtered through
the Gammatone filter bank of 64 bands (Fig. 4B), and cochleograms
were generated for the ‘frozen’ stimuli (Fig. 4C). We convolved
each band of the cochleogram with temporal filters of various
lengths (Fig. 4D) and created a convolved cochleogram for each fil-
ter length (Fig. 4E). Vector norm was applied on the convolved
cochleogram, which resulted in ACI. An example of ACI computed
using a filter length of 200 ms was shown in Fig. 4F. The ACI of
each ‘frozen’ stimulus was used to compute mutual information.
From the mutual information results, we found that the delta band
oscillation was unaffected by the temporal filter size, whereas in the
theta band the mutual information showed an effect of the filter size
starting from 200 ms (Fig. 4G).

A three-way Frequency band 9 Exponent 9 Filter size RMANOVA

was conducted on differentiated mutual information. We found a
significant main effect of Exponent (Greenhouse–Geisser corrected:
F4,42 = 5.22, P = 0.004, g2

p = 0.272). We also found significant
interaction effects between Frequency band and Exponent (Green-
house–Geisser corrected: F3,42 = 8.42, P < 0.001, g2

p = 0.387),
between Exponent and Filter size (F27,378 = 1.58, P = 0.036,
g2
p = 0.101), and between Frequency band and Exponent and Filter

size (F27,378 = 2.42, P < 0.001, g2
p = 0.147).

We then conducted a two-way Filter Size 9 Exponent RMANOVA in
the delta band. We found a significant main effect of Exponent
(Greenhouse–Geisser corrected: F3,42 = 6.84, P = 0.007, g2

p = 0.328)
but not of Filter size (Greenhouse–Geisser corrected: F (9,126) =
0.59, P = 0.802, g2

p = 0.041). The interaction was not significant
(F27,378 = 1.34, P = 0.123, g2

p = 0.087).
In the theta band, we conducted a two-way Filter Size 9 Exponent

RMANOVA and found significant main effects of Exponent (Green-
house–Geisser corrected: F3,42 = 10.14, P < .001, g2

p = 0.420) and
of Filter size (Greenhouse–Geisser corrected: F9,126 = 7.19, P < .001,
g2
p = 0.339). The interaction between Exponent and Filter size is also

significant (F27,378 = 5.10, P < .001, g2
p = 0.267). To test which filter

size differentiates among stimulus types, we conducted a one-way
RMANOVA on each filter size with Exponent as main factor. After Bon-
ferroni correction, we found main effects of Exponent on the filter
sizes: 200 ms (Greenhouse–Geisser corrected: F3,42 = 7.69,
P = .048, g2

p = 0.354), 400 ms (Greenhouse–Geisser corrected:
F3,42 = 12.74, P = .006, g2

p = 0.476), and 500 ms (Greenhouse–
Geisser corrected: F3,42 = 9.87, P = .010, g2

p = 0.414). Then, we
examined what stimulus type was affected by filter size by conducting
a one-way RMANOVA with Filter size as a main factor. We found a main
effect on Filter size for the stimuli with exponent 0.5 (Greenhouse–
Geisser corrected: F9,126 = 6.82, P = .008, g2

p = 0.291), exponent 1.0
(Greenhouse–Geisser corrected: F9,126 = 5.76, P = .036,
g2
p = 0.328), and exponent 1.5 (Greenhouse–Geisser corrected:

F9,126 = 7.45, P < .001, g2
p = 0.347) but not for the stimuli with

exponent 2 (F9,126 = 2.22, P = .100, g2
p = 0.137).

To summarize the results of the differentiated mutual information
analysis, we found that, although the stimuli in our experiment have
a 1/f modulation spectrum and show no dominant temporal modula-
tion frequencies or regular temporal patterns, the phase patterns of
the theta band cortical oscillations were captured by the ACI extract-
ing temporal information larger than 200 ms. On the other hand,
cortical oscillations in the delta band are not captured by ACI com-
puted on the timescales < 500 ms.
The finding that the delta band is unaffected by the filter size is

probably because the delta band oscillations tune to acoustic
changes on a long timescale (e.g. > 1 s). The acoustic information
represented by ACI is on a timescale smaller than 500 ms, which
does not contribute to the global change of the stimuli extracted by
a large temporal window (e.g. > 1 s). Another explanation is that
the delta band tunes to high-level information in the stimuli that our
model fails to reveal.
That theta phase shows greater MI with ACI of timescales larger

than 200 ms is consistent with the results of phase coherence in the
theta band (Fig. 4). A reasonable hypothesis is that the auditory sys-
tem uses a default temporal window of > 200 ms to chunk the con-
tinuous acoustic stream (VanRullen & Koch, 2003; Ghitza &
Greenberg, 2009; Ghitza, 2012; Giraud & Poeppel, 2012; VanRul-
len, 2016). This temporal window size is reflected in the dominant
theta oscillations found in both our results and in other studies
(Ding & Simon, 2013; Luo et al., 2013; Andrillon et al., 2016). In
stimuli without overt rhythmic structure, the auditory system
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actively parses the acoustic stream and extracts acoustic changes
using a temporal window corresponding to roughly a cycle of a
theta band oscillation. Because this chunking process has a limited
time constant, that is, 150–s300 ms, only the acoustic changes on a
timescale of larger than 200 ms are captured within acoustic dynam-
ics across all timescales in our stimuli. Our auditory processing

model using a temporal filter with different sizes simulated this
hypothesized chunking process. The model used temporal windows
to chunk acoustic streams and computed acoustic changes within
each temporal window. The ACI on the timescale of ~200 ms,
therefore, reflects the acoustic information extracted by this
chunking process in the auditory system.

...
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In summary, the results suggest that the auditory system uses a
temporal windowing process to chunk acoustic information and
extracts acoustic changes from irregular stimuli, and this temporal
window is larger than 200 ms. The preference of the auditory sys-
tem for stimuli with exponents 1 and 1.5, shown in our results in
the theta band and in Garcia-Lazaro et al. (2006), is likely a result
of this chunking process.

Discussion

We investigated neurophysiological responses to stimuli with 1/f mod-
ulation spectra and tested how listeners detect embedded tones. We
found that cortical oscillations in the theta band track the irregular
temporal structure and show a preference to 1/f stimuli with exponents
1 and 1.5, which roughly correspond to signals with the modulation
spectrum of speech. The delta band oscillations are entrained by stim-
uli with exponent 2, which has the slowest temporal modulation. The
fact that we find robust phase coherence in theta band in the absence
of regular dynamics suggests that theta oscillations are not a simple
consequence of the acoustic input but rather may represent the tempo-
ral structure of internal neural processing. By computing mutual infor-
mation between the model outputs and the phase series in the delta
and theta bands, we found that phase coherence in the theta band can
be best explained by acoustic changes captured by temporal windows
at least as large as 200 ms. Further supporting this finding, the local
SNR computed using a temporal window of 200 ms predicts the tone
detection rates and confirms the mechanism by which the auditory
system uses a temporal window (~ 200 ms) to group acoustic informa-
tion and extract salient acoustic changes.

Robust phase coherence in the theta band is not solely
stimulus driven

As the 1/f stimuli were not specifically modulated between 5 and
7 Hz to drive theta band oscillations (Fig. 1C), the robust theta
oscillatory activity, therefore, must partly originate from an intrinsic
auditory processing mechanism. In most of studies using rhythmic
stimuli, the observed cortical entrainment in the theta band could be
due to the fact that the regular temporal structure overlaps with the
timescale of this architecturally intrinsic and probably innate group-
ing mechanism. Robust phase tracking in the theta band seems to be
ubiquitously evoked by sounds. It has been shown, for example, that
repeated noise induces phase coherence in the theta band, and the
magnitude of phase coherence correlates with behavioral perfor-
mance (Luo et al., 2013; Andrillon et al., 2016). In such studies,
there is no regular temporal structure in sounds centered in the theta
band that entrains the theta band oscillations.
One reason for theta band tracking of sounds of various temporal

structures, regular and irregular, is possibly that the theta band oscil-
lations play an active role in perceptual grouping of acoustic infor-
mation, rather than being passive, stimulus-driven neural activities
(Ghitza & Greenberg, 2009; Schroeder et al., 2010; Ghitza, 2012;
Riecke et al., 2015). Our auditory processing model simulates this
chunking process across timescales, and the mutual information
results between the model outputs and phase series in the theta band
differentiate stimuli of different exponents on a timescale larger than
200 ms and echoes the results of dITPC. Therefore, the robust phase
coherence can be explained by the chunking process simulated by
our auditory processing model (Fig. 4A–F).
The active chunking process is probably a trade-off between inte-

grating a long period of acoustic information for precise analysis and
making timely perceptual decisions. Although acoustic streams are

continuous, the auditory system cannot integrate acoustic information
over an arbitrary long period because of limited information capacity
of the auditory system and of requirements for humans to make fast
perceptual decisions. This chunking process of ~200 ms divides con-
tinuous acoustic streams into discrete perceptual units, so that further
auditory analysis could be conducted timely within a ~200-ms tempo-
ral window for humans to make immediate perceptual decisions.

Preferential tuning to exponents 1 and 1.5 due to chunking

Our results of dITPC in the theta band indicate a preference of the
auditory system for stimuli with exponents 1 and 1.5, which repli-
cate the response pattern found in Garcia-Lazaro et al. (2006) using
single-unit recording in ferret primate auditory cortex. Furthermore,
the mutual information results (Fig. 4) suggest that this preference is
likely caused by the chunking process with temporal windows larger
than 200 ms in the auditory system. Although all of the 1/f stimuli
have dynamics across all timescales, the chunking process mainly
extracts dynamics on a timescale corresponding to the theta band.
The stimuli with exponents < 1 and larger than 1.5 are either modu-
lated too rapidly or too slowly, so that the dynamics on the time-
scale of the theta band range has less ‘chunking potency’ than in
the stimuli with exponents 1 and 1.5.

Tone detection results explained by local SNR confirms a
chunking process of ~200 ms

We found that although the long-term SNR of tones is the same
across all four types of stimuli, the detection rates differ because of
local SNR modulated by the exponents. These results are illumi-
nated by the informational masking literature, which suggests that
the structure of background sounds (maskers) matters when listeners
try to detect a target (Brungart, 2001; Kidd et al., 2007). The key
finding here is that participant behavior is modulated by the struc-
ture of background maskers in the same 200-ms window. This sug-
gests the auditory system is extracting 200-ms windows for
temporal analysis. This finding supports our interpretation of the
neural data, discussed above, that the auditory system groups acous-
tic information on a timescale of ~200 ms and further suggests that
this chunking process is probably fundamental for further auditory
analysis; that is to say, the separation of targets from background
sounds is probably built on this chunking process.

Delta band oscillations are invariant to acoustic details on
timescales < 500 ms

We found that only the stimuli with exponent 2 evoked robust phase
coherence in the delta band, which supplements the findings by Gar-
cia-Lazaro et al. (2006). The mutual information results in the delta
band do not vary with the filter sizes used in the auditory processing
model. This surprising result further suggests that the delta band
oscillations are probably not sensitive to low-level acoustic details,
but probably to a high-level perceptual cues, such as linguistic struc-
ture in speech (Ding et al., 2015), and attention-related rhythmic
processing (Lakatos et al., 2008; Schroeder et al., 2010).

Memory and attention as potential confounds

As the ‘frozen’ stimuli were repeatedly presented to the participants
while each of the ‘distinct’ stimuli was only presented once, one
might surmise that the participants are able to memorize the ‘frozen’
stimuli. Previous studies have shown, though, that it is challenging,
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and perhaps even impossible, for humans to memorize acoustic local
details of sounds textures of more than 200 ms long (McDermott
et al., 2013; Teng et al., 2016), well short of the 3-s length of our
stimuli. (Obviously, speech or music can be encoded and recalled.)
As the ‘frozen’ and the ‘distinct’ stimuli were comparable in terms
of long-term acoustic properties, such as spectral modulation and
spectrum, the participants had to remember the acoustic details to be
able to tell apart the ‘frozen’ stimuli from the ‘distinct’ stimuli with
corresponding exponents. It would be very challenging indeed for
the participants to differentiate one ‘frozen’ stimulus out of 25 ‘dis-
tinct’ stimuli with similar long-term acoustic properties. If the partic-
ipants could successfully identify each ‘frozen’ stimulus, we would
not expect memory to be affected by the exponent of frequency
modulation, as we have found here. Therefore, we conjecture that
memory does not contribute significantly to our results.
With regard to attention, as we only presented the target tones in

the ‘distinct’ stimuli, so it would be possible that the participants
could choose to only attend to the distinct stimuli to detect the tone.
If the participants could distinguish the ‘frozen’ and ‘distinct’ stim-
uli by memorizing the ‘frozen’ stimuli and figure out that tones are
contained only in each of the distinct stimuli (we did not tell the
participants this information), we would expect that the tone detec-
tion performance should be similar across all exponents, as the par-
ticipants could simply choose the ‘distinct’ stimuli as the target. But
we did find a difference of tone detection across different exponents,
and this difference, importantly, can be explained by our acoustic
analysis on local SNRs (Fig. 2).
Therefore, although it is true that memory and attention are always

relevant considerations, the effects caused by memory and attention
are unlikely to form the explanatory basis of our main results.

Conclusion: active chunking on a timescale of ~200 ms
in the auditory system

Our results demonstrate an active chunking scheme in the auditory
system (Poeppel, 2003; Ghitza & Greenberg, 2009; Panzeri et al.,
2010; Ghitza, 2012; Giraud & Poeppel, 2012; VanRullen, 2016):
On the timescale of ~200 ms, the auditory system actively groups
acoustic information to parse a continuous acoustic stream into seg-
ments. The robust phase coherence in the theta band is not solely
driven by external stimuli but also reflects active chunking. This
chunking scheme is prevalent in auditory processing of sounds of
various dynamics and may serve as a fundamental step for further
perceptual analysis.
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